On holomorphic projection for symplectic groups

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Holomorphic Representations of Symplectic Groups

In this paper we shall give a simple and concrete realization of a set of representatives of all irreducible holomorphic representations of G. This realization, which involves the G-module structure of a symmetric algebra of polynomial functions is inspired by the work of B. Kostant [1] and follows the general scheme formulated in [2]. Detailed proofs will appear elsewhere. 1. The symmetric alg...

متن کامل

Theta functions on covers of symplectic groups

We study the automorphic theta representation $Theta_{2n}^{(r)}$ on the $r$-fold cover of the symplectic group $Sp_{2n}$‎. ‎This representation is obtained from the residues of Eisenstein series on this group‎. ‎If $r$ is odd‎, ‎$nle r

متن کامل

Holomorphic Symplectic Geometry Ii

Hyperkähler embeddings and holomorphic symplectic geometry II. 0. Introduction. This is a second part of the treatment of complex analytic subvarieties of a holomorphically symplectic Kähler manifold. For the convenience of the reader, in the first two sections of this paper we recall the definitions and results of the first part ([V-pt I]). By Calabi-Yau theorem, the holomorphically symplectic...

متن کامل

Foliations on hypersurfaces in holomorphic symplectic manifolds

Let Y be a hypersurface in a 2n-dimensional holomorphic symplectic manifold X. The restriction σ|Y of the holomorphic symplectic form induces a rank one foliation on Y . We investigate situations where this foliation has compact leaves; in such cases we obtain a space of leaves Y/F which has dimension 2n − 2 and admits a holomorphic symplectic form.

متن کامل

Rational curves on holomorphic symplectic fourfolds

One main problem in the theory of irreducible holomorphic symplectic manifolds is the description of the ample cone in the Picard group. The goal of this paper is to formulate explicit Hodge-theoretic criteria for the ampleness of line bundles on certain irreducible holomorphic symplectic manifolds. It is well known that for K3 surfaces the ample cone is governed by (−2)-curves. More generally,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2018

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2017.06.005